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Discretization of viscous incompressible and viscous low-Mach-number flows
often leads to a system of equations, which is very difficult to solve. There are
two reasons. First, the use of high aspect ratio grids results in a very numerically
anisotropic behaviour of the diffusive and acoustic terms and second, in low-Mach-
number flow, the ratio of the convective and acoustic eigenvalues of the inviscid
system becomes very high. We implemented an AUSM based discretization method,
using an explicit third-order discretization for the convective part and a line-implicit
central discretization for the acoustic part and for the diffusive part. The lines are
chosen in the direction of the grid points with shortest connection. The precondi-
tioned semi-implicit line method is used in multistage form because of the explicit
third-order discretization of the convective part. Multigrid is used as an acceleration
technique. It is shown that the convergence is very good, independent of grid aspect
ratio and Mach number. @ 1999 Academic Press

Key Wordsviscous incompressible flow; viscous low-Mach-number flow; multi-
grid method; high aspect ratio grid; preconditioning.

1. INTRODUCTION

Preconditioning of the incompressible [15, 17, 16] and compressible Navier—Stokes ec
tions [2, 15,7, 17, 9, 16] is used by many authors in order to accelerate convergence, €
cially for low-Mach-number flows. However, this technique does not always provide go
results on high aspect ratio grids, because of the stiffness introduced by the numeric
anisotropic behaviour of the diffusive and acoustic terms. For aspect ratios appropriat
the flow, preconditioning can help to eliminate this stiffness [9]. However, a more robt
method consists in the use of an implicit line solver combined with multigrid [12].
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When standard flux-difference splitting is applied to the inviscid part of the compressil
flow equations, the numerical scheme becomes very stiff for low Mach numbers [1
Therefore the splitting scheme must be adapted, i.e., the system must be split accol
to its modified eigenvalues. The modified splitting is also necessary for accuracy [10,
The reason is that the original flux-difference splitter is too dissipative in the streamw
direction for low Mach numbers since the dissipation term scales with. Moreover, the
use of a flux-difference splitter leads to a computationally expensive technique.

In our work, the stiffness due to the grid aspect ratio is removed by the use of line me
ods. The low-Mach-number stiffness together with the loss of accuracy is eliminated by
appropriate discretization of AUSM typadvectionupstreansplitting method) and a local
preconditioning technique. Multigrid is used as a convergence accelerator.

The discretization is AUSM simplified by taking the limit for vanishing Mach numbe
and for constant density and extended by adding stabilization terms. There are two rea
for formulating the discretization scheme in this way. First, the flux definition is extreme
cheap. It is much simpler than in a flux-difference scheme. It has a low cost comps
ble to the original AUSM [11]. Second, the discretization has, by construction, the corr
physical behaviour for vanishing Mach number (low-Mach-number compressible flow)
incompressible flow.

The purpose of the paper is to present a scheme of high quality and high efficiency
low-speed applications with constant and varying density.

The method is illustrated with a backward facing step flow of an incompressible flu
and a compressible fluid at low speed and by thermally driven cavity flow.

2. GOVERNING EQUATIONS

The two-dimensional steady Navier—Stokes equations in conservative form for an inct
pressible fluid are

au 0

7+7v:0,

ax  ay
3, 0 I 92U 92U
TR+ L+ L=y 422, 1
X +3y er8xp U(8x2+8y2 @)

9, N 9 2, o _ 3%v N 3%v
—U+ —v°+ —p =v|—+— |,
P ax2 = 9y?

whereu and v are the Cartesian components of velociy,is the kinematic pressure
(P’ = p/p), pis the pressure, is the density, and is the kinematic viscosity.
The set of equations (1) can be written in system form as

oF.  dFy 090G, 090G, 0F, 0G,

X X oy y X ay

whereF; andG. are the convective fluxe§, andG, are the acoustic fluxes, argl and
G, are the viscous fluxes,
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and
0 v 2
u
Ge=|Uv |, Ga=| 0], Gy=|"ay
2 /
dv
v p vi

A distinction is made between the convective and acoustic parts of the inviscid flux vec
because a different spatial and temporal discretization will be used for these parts.

3. DISCRETIZATION

Figure 1 shows a rectangular grid with constant meshAizendAy (Cartesian grid).
The control volumes are centerd around the vertices of the grid.
The discretization of the convective flux is based on velocity upwinding,

0 0
FCI+1/2 = Uit1/2 |fa£| > GCH~1/2 = Vj+1/2 [U] > 2)
vl /R VAL /R
where
(L if uy2>0
Lr= )
()R otherwise
and
Ui + Ui Vj + Vj41
Ui+12 = 5 Vjt+1/2 = -5

We use a short notation for the subscripts. For instan¢és denoted by oru; andu; j41
is denoted byu;;1. The subscript which is not shifted with respectitor j is omitted

(Fig. 1).
The left (L) and right R) values are computed with the Van Leeapproach,

1
qg. =0q + Z[(1+K)(Qi+1—Qi) + @A - )G —ag-1],

3
1
Or = Gi+1 — Z[(l+ K) (@41 — i) + A —©)(Git2 — Gi+1)],

i+

j*1/2

i-1 i i+1
i-1/2 i+1/2

FIG. 1. Vertex-centerd control volume.
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with « = 1/3 for third-order accuracy. For a first-order approach the left and right valu
would be

a. =G, Or = Gi+1.

g stands for any of the three state variahles, or p.
The acoustic flux is discretized in the central way:

u v
Fai+1/2: p/ ’ Gai+1/2: 0
0dit12 Pl 12

The discretization of the convective and acoustic terms corresponds with the origi
AUSM-scheme [11] if the energy equation is omitted, a constant density is assumed,
the Mach number is going to zero.

The viscous flux is also discretized in the central way:

0 0
Uinq — Ui
_ Uit1 — Ui |y
FU|+1/2 - AX s GUHJ_/Z = A
Vi41l — Ui Vj41 —Vj
VTAX VTR

Since the pressure term is discretized in the central way, pressure stabilization is nee
In the original AUSM-scheme there is a lack of pressure stabilization for Mach numt
going to zero. Therefore a pressure-velocity coupling was added in a newer versiol
the AUSM-scheme suitable for all speeds [6]. This pressure-velocity coupling consist:
an artificial diffusion added to the mass flux. As discussed by Edwards and Liou [6], t
term should scale inversely with the velocity magnitude. The same scaling of pressi
velocity coupling is present in the preconditioned Roe scheme [17] or in the flux-differer
splitting for incompressible Navier—Stokes equations [5]. This pressure-velocity coupl
introduces a pressure diffusion in the continuity equation and an upwinding of the press
derivative in the momentum equations. However, the upwinding is only needed for hi
speed compressible flow.

Taking into account the previous remarks, only an artificial dissipation term for tl
pressure is added in the continuity equation in the following way,

pi/+1_ p{ pi+1_ p}
8 Bx 3 By
Fd\+1/2 = 0 > Gdj+1/2 = 0 ’
0 0

wherepgy andgy have the dimension of velocity. We have taken

. n 2v . n 2v
Bx = wr Ax’ ﬁy = Wr Ay

b

whered =1/2 andw; is a reference velocity, either chosen to be a global velocity or
local velocity (/U2 + v2). For incompressible flow applications, we take a global referenc
velocity as the maximum velocity in the flow field. This results in a linear dissipation ter
with an advantage for implicit treatment of this term. For inviscid flow (i.e= 0), this term
corresponds with the dissipation term introduced by the flux-difference splitting method
incompressible flow [5]. Following Weiss and Smith [17] and discussed by Metldd
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[13], Bx and By are treated in such a way that they scale with the local diffusion velocitie
v/Ax andv/Ay when these terms become important.
The complete flux vectors become

F=F0+Fa_Fv_Fd, G=Gc+Ga_GU_Gd.

4. TIME-MARCHING METHOD

In this study we use a time-marching method in order to reach the steady state solu
of the incompressible Navier—Stokes equations. Since the discretization of the fluxes
be partly explicit and partly implicit, we do not consider a transformation into the primitiv
form of the equations. Applying the artificial-compressibility method to the conservati
form of the inviscid part of the Navier—Stokes equations gives

FE)Q oFc  dFs 9G: 09G,
ot X X ay ay

Q is the vector of variables, u, v]". The preconditioning matriX is given by

1
2

=

00
I'= 1 0f-
01

o O

whereg has the dimension of velocity. The eigenvalues of the inviscid part of the precc
ditioned system are given by

N 1__18(an +nyG)
0Q

wherew = nyu + nyv, ¢ = \/w? + B2, andn, andny denote an arbitrary direction with
n2 + n§ = 1. If 8 is of the same order of magnitude as the convective speed, all eigenval
are properly scaled in at least one direction.

This artificial-compressibility method will be used as a smoother for the multigrid, as
shown in the next section. The artificial-compressibility method belongs to the family
local preconditioning techniques. Local preconditioning is known to work well on isotrop
grids [9], but not always on non-isotropic grids, with high aspect ratios. This will be shov
in the Fourier analysis in the next section. It will also be shown that a semi-implicit di
cretization is needed in order to have a robust method suitable for high aspect ratio me:

):w,w—i—c,w—c, (4)

4.1. Stepping in Pseudotime
A multistage stepping is used with four stages,

Q¥ =q"

QY = QO 4 ¢, cfl AQ©
Q@ = QO 4 ¢, cfl AQW
Q¥ = QO 4 gz cfl AQ®
Q¥ = QO 4+ ¢, cfl AQ®
Q™= Q¥
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with {a1, ap, a3, a4} equal to{1/4, 1/3, 1/2, 1} and thecfl-number equal to 1.8. We denote
thiscfl-number as the globafl-number of the method. TheQ™ of each stage is given by
AQM = QM+D" _ QM whereQM+1" is computed with the semi-implicit point method
(10) or the semi-implicit line method (7).

The multistage semi-implicit method is accelerated with the multigrid technique. A ft
approximation scheme is used in a W-cycle with four or five levels of grids. The computati
is started on the finest grid in order to show the full performance of the multigrid methc
For the restriction operator, full weighting is used. The prolongation is done with biline
interpolation. Two pre- and postrelaxations are done. The use of five levels of grids res
in a cost of 32.375 work units for each multigrid cycle, when one work unit consists of
residual evaluation and an update, or a residual evaluation together with a restriction a
prolongation.

4.2. Determination of the Pseudotime Step

Consider a uniform Cartesian mesh with constant Ay. The time stepAt on this
mesh is computed as

AT = Wt oo/Ax —1k (v+cy)/Ay’
with
= V(U2 + B2), (5)
and

¢y =V (v2+ 9. (6)

Assume that the flow is inviscid and aligned to the x-direction, i.es;, 0. If 8 is chosen
in the order ofu, then all three eigenvalues (4) have the same order of magnitude in 1
x-direction and all waves are convected into this direction witH-@aumber in the order of
unity.

It must be stressed that if the allowald#-number becomes smaller, the convergenc
will break down. This happens for large grid aspect ratios. We define the grid aspect r
Oar for the Cartesian grid as

AX
Oar = —

Ay’
If gar is very large, then the allowable time stap is equal toAy/c, and the maximum
allowablecfl-number in the x-direction is

g~ UHo0AT _utecl 1
o AX B Cy Dar gar.

This will lead to a breakdown of the convergence. It is shown in the Fourier analysis t
if the acoustic fluxes in the y-direction are discretized implicitly, the system stays stabl
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the time step definition is changed into

1
' Ut c)/AX + wrv/AY’

wherew; is a scaling factor. If the flow is aligned to the x-direction, tloél) is equal to
unity. If the viscous terms are becoming important, the von Neumann number determi
the maximum allowable time step

Ay?
AT = —,
2v

andcfl, will become small.

If the viscous terms are also treated with a line-implicit method in the y-direction, th
this von Neumann restriction on the time step disappears, arfljreumber is again in the
order of unity. It is obvious that the acoustic and viscous terms need an implicit treatm
in the direction of the smallest grid distances. These parts consist of linear terms.
convective part is non-linear and if an explicit treatment is used for this part, no Jacobi
have to be recomputed every time step in order to update the set of equations. An img
treatment of the convective part on high aspect ratio grids is not really necessary bec:
the ratio(u/AXx)/(v/Ay) can have the same values on an anisotropic grid as on an isotro
grid with more alignment of the flow, where it is known that explicit methods work we
(e.g., the GAMM-bump test case can be solved without explicit preconditioned metho
even in the low-speed limit [7]). Therefore, our strategy is a combination of an explicit loc
preconditioning method and an implicit line method for the acoustic and viscous terms
the direction of the smallest grid distances.

This semi-implicit line method for a grid with small cell dimensions in the y-direction i
given by

r . IFM™  GFM
. 2 2 Av (m+)* (m) C a
(A‘L’+ w2Ad + 2w3 )(Q Q )—i——ax + o
IGM M+’
— (A + A QM —2Q™ + QT ) + —= a
ay ay
— (B, + By) (Q™7" —2QT* + Q1Y) =0, (7)
whereA,, B,, A4, andBy are
0O O 0 0O O 0
Al): O ﬁ O ’ Bu: 0 ALYZ 0 ’
0 0 0 0 &
and
S S
B A% 00 B Ay 0 O
Ad=| 0 0 0| Bi=[ 0o o0 o0f:
0 0 O 0 00
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and where
2v
= u2 2 —_—, 8
B + ve 4+ Ax (8)

and

1
© (U4 C)/AX 4+ wrv/AY’

(9)

with ¢, computed as in Eq. (5) with given by (8).

The introduction of the factap; results in a different scaling of the convective velocity
in the direction of the implicit lines (y-direction) with respect to the convective velocit
in the x-direction. The introduction of the factats andws allows a different scaling of
the artificial damping term and the viscous terms with respect to the convective terms.
scaling factorsv;, w2, andws are available for optimization of the smoothing rate of the
method. This optimization is treated in the next section.

In (8) there is no viscous contribution from the y-direction and in (9) there is no acous
contribution from the y-direction because these terms are treated implicitly in this directi

In order to illustrate the performance of the method we also consider the semi-impl
point method. For this method the equations are given by

<F+&wm+mnﬂm&+&omww—dm

AT
IF™ AF™ m oM om
% Ix —(Ay +Ad)(Q| -1,j — Q| Qi+1,j)
aGmMm 9GmMm
¢+ —2 (B, +By)(QT, —2Q + Q) = (10)
ay ay
where
2v 2v
=Vu24 24+ 11
B +v2+ +Ay (11)
and
1

T U+ C)/AX+ (v +Cy)/AY’

with ¢, andcy computed as in Egs. (5) and (6) wighgiven by (11).

Also here we have introduced the scaling factorsindws for the scaling of the artificial
damping term and the viscous terms. Since the acoustic terms are centrally discreti
these terms are treated explicitly in the semi-implicit point method.

5. FOURIER ANALYSIS

The schemes of the previous section are now analysed with the Fourier method.
assume a rectangular grid without stretching and with periodical boundary conditions. -
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stateQ can be written as the sum of the steady state soIL(ﬁczmd an errolr which is
function of the pseudotime:

QXx,y,7) = Q(X,y) + ¥(X, Yy, 1). (12)

The error can be written as a sum of Fourier waves. The Fourier component with wi
numberwy in the x-direction and wave numbey, in the y-direction is written as

Vi, (X, Y, T) = ()€ @XFwY) (13)

where j stands for the imaginary unit. The substitution of Eq. (12) into the system
Egs. (10) results in a system of equations for the error. The linear terms result in ident
expressions. The quadratic terms need some explanation.

As an example, the error due to the quadratic term

au?

X
is worked out. Using (2), the first-order discretization of this term is written for a positiv
velocity componenti as

= (Uit1/2Ui — Ui—1/2Ui_1). (14)
AX
For the non-linear terms we assume a uniform flow field. Tinean be written as

Ug = U+ v,

wherek stands for any subscript ands constant. Using the previous expression, Eg. (14
becomes

1_
Bu(wiJrl/Z — Vi + i — Yo+ O(WZ))~
By introducing Eq. (13), the coefficient of the tegH**+t®v¥) can be written as

P (tyu(ce®y, AX) + up(dx, AX)),

where

and
up(@, As) = ——Kk(9)
po, = ,

with & = wAsandk(9) = 1 for the first-order upwind scheme. For the Van Leenethod
(3), k(0) is given by

©) = 14 3[A+0E 1+ @ -0 e ]
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Similar equations hold if the velocity componeris hegative. For completeness we already
define vi6, As) needed for the viscous contributions and the artificial dissipation term ¢
_ —e 17 42 ¢l?
Vi(0, As) = ———.
( ) N

Neglecting higher-order terms in the error component, the following system for the er
has to be solved for each stage in the time-marching procedure

PAV +CV¥ = 0. (15)
The Fourier symbalF (6, 6y) is then given by
F(x, 6y) = —cfIP 6y, 6y)2C by, 6y).

The expressions fdp are dependent on the time-marching method and are given belc
The expression fo€ is given by

C=A+B, (16)

whereA contains the convective terd, the acoustic termd,, the diffusion termA,, and
the artificial dissipation terndy in the x-direction, and contains the corresponding terms
in the y-direction,

>

A+ Ay + A, + Aqg,
B = B¢+ Ba+ B, + By,

where
[0 0 0
Ac=|0 T(up(Bx, AX) + Ce(by, AX)) 0 :
0 vee(By, AX) aup(dx, AX)
[0 0 0
B. = |0 vupdy, Ay) uce(dy, Ay) ,
K 0 v(up(dy, Ay) + cey, Ay))
and
0 ceby, AX) O 0 0 ceoy, Ay)
As=| ce(Oy, AX) 0 o, B,= 0 0 0 ,
0 0 0 ce(dy, Ay) O 0
and
0 0 0 0 0 0
A,=|0 wvi(by, AX) 0 , B,=|0 wvi(dy, Ay) 0 ,

0 0 Vi (O, AX) 0 0 wi(By, Ay)
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and
%vi(@x,Ax)Ax 00 ﬂ%vi(ey,Ay)Ay 00
Ag= 0 0 0| Ba= 0 00
0 00 0 00

For the semi-implicit line method the matriX is given by
l3=f‘|_+éa+ éu+éda (17)
with

r
'L = — + 2wAq + 2w3A,
At

1 28
0 0 é +w3%

For the semi-implicit point metho® is equal tol"p, with
A r

Fe =+ 2wo(Ag + By) + 2w3(A, + By)

1 28 28
Far T wz(m + m) 0 0
1 2v 2v
1 2v 2v

5.1. Generic Test Cases

Different flow situations are analyzed and a comparison is made between the semi-imp
point method and the semi-implicit line method. In the next figures, eigenvalues of t
Fourier symbolF (6x, 8y) for 6 € [0, 2] with steps ofAfy = /20 and foy =0, 7 /2, 7,
and 3r/2 are computed and shown in the complex plane. The stepping in pseudotime is ¢
with a four-stage method with standard coefficients. The stability domain of this meth
together with the eigenvalues of the Fourier symbol is shown in the left panels of the figul
In the right panels of the figures the amplification factor is shown for the algorithm usil
either the semi-implicit point or line method with multistage pseudotime stepping. For ec
(6x, By) combination the maximum modulus of the eigenvalues of the amplification mat
is shown. All Fourier symbols and stability results are computed aftthumber equal
to 1.8. The samefl-number is used for the experimental verification of the different te:
cases.

5.1.1. Inviscid flow aligned to the x-direction, grid aspectratipg1. Figure 2 shows
good damping in théy-direction for both the point and the line method. BRe=0 one
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FIG. 2. Stability results for inviscid flow aligned to the x-directiam, = 1; top, the point method; bottom,
the line method; left, Fourier symbols in the complex plane; right, amplification factor.

eigenvalue of th€ matrix of Eq. (15) becomes zero. This is due to the alignment. In th
case(@y =0, v =0) the matrixC becomes

Biyvi 6y, AY)Ay 0 ceby, Ay)
Calignment= 0 0 Jce(ey, AY)
ce(by, Ay) 0 0

This matrix has a column of zeroes and so one eigenvalue is zero. The amplifica
matrix P~1C has also a zero eigenvalue and therefore its amplification factor is equal tc
A zero eigenvalue means a loss of coupling for the correspondig eigenvector combina
of the variables. This is often seen as the reason for slow convergence in aligned flow.
would mean that any flow where most of the flow field is aligned to the grid would cau
slow converge. However, computations show that this is not correct.

For the experimental verification, we consider an inviscid channel flow with grid aspe
ratio equal to unity. At the inlet, uniform flow is imposed and pressure is extrapolated frc
the flow field. At the outlet, pressure is imposed and velocity is extrapolated. At the sc
walls, pressure and tangential velocity component are extrapolated and normal velc
component is set to zero. All extrapolations are done piecewise constant. As initial fl
conditions, pressure is set equal to zero and velocity components equal to 0.1 of the
velocity. The grid has 65 nodes in the x-direction (from inlet to outlet) and also 65 noc
in the y-direction (between the two solid walls).
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: MG Line Method
: MG Point Method
: SG Line Method

: SG Point Method

HWND =

Log(Max(Residue))
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FIG. 3. Convergence results for inviscid flow aligned to the x-direct@pp,= 1.

Figure 3 shows the convergence of the point and the line method in single grid (SG)
in multigrid formulation (MG). Five levels of grids were used in a W-cycle for the MC
method.

The MG line method has the best performance in terms of work units. However, on:
Cartesian grid, the cost of a flux evaluation is very low with respect to the cost the calculat
of an update. Therefore the MG point method is almost three times faster in CPU than
MG line method.

The good performance in the aligned case comes from the role of the boundary conditi
Dirichletboundary conditions are used here. The Dirichlet boundary condition at the inlet
velocity components and the Dirichlet boundary condition at the outlet for pressure toget
with the strong coupling of the variables in the flow direction eliminate the unsmooth
eigenvector combination. This effect is not visible in the Fourier analysis, which assun
periodic boundaries. The strong coupling in the flow direction is a consequence of
preconditioning. As already remarked, by proper choicg afhe eigenvalues of (4) can
be in the same order of magnitude. In this case, the Fourier symbols for@yiedincome
together fo, = 7 in a zone where good damping can be assured as is clear in Fig. 2.

This can also explain why in compressible flow any local time-marching method wor
well as long as the Mach number is high enough. In low-Mach-number flow the convect
eigenvalues are scaled down with respect to the acoustic eigenvalues and the converge
deteriorated. However, with appropriate preconditioning the problem can be solved, des
the fact that in aligned flow the eigenvalues in the normal direction still have a differe
order of magnitude.

5.1.2. Inviscid flow aligned to the x-direction, grid aspect ratjp-g1000. Figure 4
shows the stability results for this flow situation. Due to the high grid aspect ratio, the til
step is reduced for the point method because of the stability restriction due to the acot
systeminthe y-direction. This was already discussed in Subsection 4.2. In the#hélg
plane the amplification factor is around unity. The convergence will be strongly deteriorat
If the line method is used with lines in the direction of the smallest grid size (y-directior
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FIG. 4. Stability results for inviscid flow aligned to the x-directiam, = 1000; for caption see Fig. 2.

the influence of the grid aspect ratio disappears completely. Convergence for this ca:
comparable to the case with grid aspect ratio equal to unity.

Figure 5 shows the convergence results for this test case. As initialfleelocity is
set equal to 0.1 and-velocity equal to QL/ g, of the inlet velocity. The MG and SG line

0
f>
i 4
5
=) 1: MG Line Method
2 2. MG Point Method
3 3: 8G Line Method
% 4 : SG Point Method
s |
2 .10}
_, =
.15 -
L 1 L L 1 L L L 1 L L L L 1 L L L |
0 5000 10000 15000 20000
Workunits

FIG.5. Convergence results for inviscid flow aligned to the x-directgp= 1000.
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FIG. 6. Stability results for inviscid flow aligned to the y-directiam, = 1000; for caption see Fig. 2.

methods perform very well as expected. The point method shows almost no converge
and its MG formulation diverges because there is no smoothing at all.

5.1.3. Inviscid flow, aligned to the y-direction, grid aspect ratip-g1000. Figure 6
shows that both the point and the line method give good damping in the streamwise direc

The determination of the pseudotime step by (9) is in this case strongly dependent or
convective velocity component We observed that the line method was stable fofla
number equal to 1. However, by taking ttfé-number equal to 1.8 corresponding with the
previous test cases, the line method became unstable. By setting the scalingfactar
the instability disappeared. As already mentioned above, there is a different scaling of
convective terms andv for the line method due to the different treatment of both velocitie
in the computation of the pseudotime step (9). The introduction of the scaling factor car
seen as a tuning of the globzil-number to thefl-number for the convective subsystem in
the y-direction.

The convergence plots for this test case are shown in Fig. 7. There is almost no differe
between the point and the line methods. There is only an acceleration of the MG met
for the first residual drop of six orders of magnitude. Then there is a breakdown of the N
performance with respect to the SG performance.

5.1.4. Viscous flow, aligned to the x-direction, grid aspect ratio 100Q, R€100. Fig-
ure 8 shows that for the point method in this case, good damping is obtained in the
direction. In the streamwise direction, there is no damping due to the small time step.
explained in Subsection 5.1.1 by using a Dirichlet boundary condition in the y-directic
good convergence can be obtained. However, pressure boundary conditions at solid \
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FIG. 7. Convergence results for inviscid flow aligned to the y-directmp~= 1000.

are of Neumann type. The pressure level on lines in the y-direction has to be determine
information exchange along the x-direction but since there is no damping in this directi
convergence will be deteriorated. For the line method, the time step can be taken n
larger so that there is very good damping in both directions.
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FIG. 8. Stability results for viscous flow aligned to the x-directigr, = 1000, Re, = 100; for caption see
Fig. 2.
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FIG. 9. Convergence results for viscous flow aligned to the x-directign= 1000 in the whole flow field;
c.e., explicit discretization of convective terms; c.i., implicit discretization of first-order part of convective terr

For the experimental verification, at the lower boundary, the velocity is set to zero. At t
upper wall a symmetry plane is assumed. So for this wall, the same boundary conditi
hold as in the previous cases. At the inlet, a parabolic inlet profile is prescribed. For
construction of the grid, we consider two cases. The first grid has a grid aspect ratio e
to 1000 in the whole domain. The second grid has a grid aspect ratio equal to 1000 af
lower wall but is stretched towards the upper wall, where it has a grid aspect ratio eque
1. As the initial flow condition, pressure and velocity are set equal to zero.

Figure 9 shows the convergence plots for the first grid. The MG line method with expli
discretization of the convective terms shows a slow convergence in the beginning. Thi
due to the fact that during the initial convergence phase the velocity in the field is not aligt
with the grid and that in this temporary flow direction no Dirichlet boundary condition
are present for the pressure. The difference with the previous test cases is the para
inlet profile, which causes rather high velocities in the y-direction in the beginning of tl
computation. For instance, wherbecomes only one-tenth af then the flow is to be seen
as almost aligned with the y-direction because

LAY 001

uAy
In that case there is no good damping in the x-direction, i.e., the direction normal to the fi
(smoothing is given by Fig. 6 wheh- andd-axes are exchanged). The lack of smoothing ir
the x-direction is due to the fact that the convective terms are treated explicitly, also in the |
method. Therefore, if there is an importantelocity component, the time step is restricted
by thisv-component (9), and causes a snelinumber in the x-direction. Only if the flow
is sufficiently aligned in the x-direction, thedl-number in the x-direction is high enough to
allow good smoothing. This happens in the test case when the residual has dropped ¢
orders of magnitude. From this point, the residual shows normal convergence behavi
In order to avoid this problem, the first-order part of the convective terms can be lineari:
and treated implicitly in the line method (c.i. in Fig. 9). There is a gain in work units but r
gain is achieved in terms of CPU for this test case, because the disadvantage with imy
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treatment of convective terms is the recalculation of the LU-decomposition of the blo
tridiagonal system. With explicit treatment of the convective terms, only the backsubstitut
is calculated every iteration. The reason is that, apart from the preconditioning matrix,
matrices in the left-hand side are constant. After a few initial iterations, the precondition
matrix can be frozen and the LU-decomposition does not have to be recalculated. The se
in computing time using the latter approach will be illustrated in Section 6. Therefore
do not consider the inclusion in the left-hand side of the non-linear convective terms in
y-direction. This would only give an improvement for the very particular test case trea
here, but is not necessary in more general flow situations.

As already discussed above, there is a strong coupling in the y-direction due to the |
grid aspect ratio. The amplification factor is significantly below unity, compared with Fig.
due to the importance of the viscous terms. However, the pressure boundary conditic
this direction is a Neumann boundary condition both on the lower and the upper w
Therefore the pressure offset for this line is determined by the neighbouring lines in
x-direction, where there is a very weak coupling for the point method. This explains w
the convergence is deteriorated for the point method.

A flow situation, where the grid has a constant aspect ratio along the total height, is v
rare. Mostly stretched grids are used with a high aspect ratio at the boundaries, but a no
aspect ratio in the middle of the flow field. The convergence results for the same test c
but with the second grid, are shown in Fig. 10. In the region of the high aspect ratic
the lower wall, there exists a strong coupling in the y-direction and so good damping
the y-direction is obtained. In the region with smaller grid aspect ratio, there is damp
in all directions. Therefore the pressure level is in this case determined by informat
exchange along the x-direction. This region then acts as a Dirichlet boundary condition
the underlying region with high grid aspect ratio. Therefore the convergence is good,
even the point method converges.

5.1.5. Viscous stagnation zone, grid aspect ratjo=gl. We consider now = v =0.
Figure 11 shows good damping in the x- and the y-direction for both the point and the |
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FIG. 10. Convergence results for viscous flow aligned to the x-directign= 1000 at lower wallg,, = 1
at upper wall.
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FIG. 11. Stability results for viscous stagnation zogg, = 1, for caption see Fig. 2.

method. For stability reasons, the scaling factoy@ndws are chosen equal to 1.5 and 1,
respectively, for the point method. For the line method hottandws are chosen equal
to 1. The introduction of these scaling factors is needed because the viscous terms
another scaling in the Fourier space than do the convective terms. The¢flevainber of
1.8 is in this way tuned to an appropriaté-number for the artificial damping and viscous
terms. The use of the terafl-number seems to be a little strange for viscous terms, but
fact, if a local diffusion velocity is seen as

2v
vdiff = ——,
" AX

then acfl-number computed on this velocity is equal to the viscous Von Neumann nul
bero
Vi AT 2vAT

AX AX

We first explain the choice ab, andws for the point method. Witlu = v = 0 and for
Ox = 0y = m the matrices? (18) andC (16) are given by

%(% + ) 0 0
P= 0 01+ w9) (5 + a2) + axsy 0
0 0 214 w3) (52 + Aiyz) + Teiy
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and
z 0 0
E=|0 4(ze+ 57) 0 . (19)
0 0 (52 + ay2)

For a high grid aspect ratio and with = 1.5 andws; = 1, — P~1C is given by

~[-1 0 o0
—-PC=|0 -1 0], (20)
0 0 -1

so that for a globatfl-number of 1.8 all eigenvalues lie together in the complex plane |
point (—1.8, 0), where there is good damping. For a grid aspect ratio equaHtB 1:C is
given by

-1 0 O
—Pp={0 -2 0
0 0 -2

and also in this case all eigenvalues lie in a region in the complex plane where there is ¢
damping.

For the line method, with = v = 0 andéy = 6y = m, theC-matrix is the same as (19).
The P-matrix (17) is given by

W2+ 9) 0 0
P= 0 (1 +w) 5z + 4 0
0 0 2(L+w3) 5z + 2z

Forw, = w3z = 1, the P-matrix is identical to theC-matrix, so that, independent of the
grid aspect ratic- P-1Cis given by (20). The eigenvalues lie in a region where there |
good damping focfl =1.8. We remark that the precise valueswpfandws are not very
critical. For instance, also for the point method, good damping is obtaines forws = 1.

In fact, it is often advantageous not to choose the factors too large. It is important that
cfl-number can be rather large because the convergence speed is not only determine
smoothing of error components but also by elimination of these through convection ou
the flow field. So, as a general rute; andws can be set equal to unity. These values ar
used in the convergence tests.

Figure 12 shows the convergence plots for the viscous stagnation zone. As initial f
conditions, the pressure is set to zero and the velocity componentdutpAX. A no
slip condition on velocity is used at the left, the lower, and the upper wall. The pressur
prescribed at the right wall (maximum x). Both the pointand the line methods are perform
very well. The MG formulation of both methods is very effective. This is not surprisin
because in this case the equations are almost reduced to the equations of Laplace, for\
the MG is known to work very well.
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FIG. 12. Convergence results for viscous stagnation zgges 1.

5.1.6. Viscous stagnation zone, grid aspect ratip=g1000. Again, in the Fourier
analysis the scaling factors are setdp—1.5 andwz =1 for the point method and to
ws = w3 =1 for the line method.

Figure 13 shows that there is only damping in the y-direction for the point method. F
the line method there is good damping in both directions.
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FIG. 13. Stability results for viscous stagnation zogg,= 1000; for caption see Fig. 2.
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FIG. 14. Convergence results for viscous stagnation zgges+ 1000.

The experimental verification in Fig. 14 shows a bad convergence for the point meth
As initial flow conditions, the pressure is set to zero,uheelocity component to.Qv/AX,
and thev-velocity component to .Qv/Ay. A no slip condition on velocity is used at the
left, the lower, and the upper wall. Pressure is prescribed at the right wall (maximum
There is a good damping in the y-direction but in this direction the boundary condition
the pressure is a Neumann boundary condition. Therefore the convergence is deterior
The line method shows a good convergence. This is expected because of the good dar
in both directions.

6. BACKWARD FACING STEP

The method is tested on a backward facing step problem. The height of the step is chi
as one third of the channel height. We consider two grids. The first grid hagl8Inodes
and the second grid has &1193 nodes. Both grids have the same distribution of points i
the x-direction. In the y-direction the second grid has four times more cells than the f
one. The highest aspect ratio on the first grid is about 35 and on the second grid 140.
same multigrid method is used as described above, but only four levels of grids are
instead of five.

Figure 15 shows the streamline pattern, obtained on the first grid, for Reynolds num

U
Re, = max) — 150
1%

whereh is the height of the step andh, .« is the maximum value of the velocity at the inlet
section. The streamlines were obtained by integration of the calculated velocity profiles
made dimensionless by dividing by the inlet flow rate, so that the streamline corresponc
with the upper wall has the value 1. The reattachment length to step height ratio is abol
This result is in accordance with the experimental value [14].
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FIG. 15. Streamline pattern for the backward facing step problem, obtained at the finest grid.

Figure 16 shows the isobars, normalized according to

P— Pc

= Re1 A A 110 0
1/2pur%ax

(21)

il

wherep is the corner pressure.

Figure 17 shows the convergence history for the MG point and the MG line method
the two grids with different grid aspect ratios. It is clear that for the line method the gr
aspect ratio has no influence on the performance of the method, while for the point met
the convergence deteriorates when the grid aspect ratio becomes larger. The asym|
convergence rate for the line method is 0.5062 per MG cycle.

The computational cost is extremely low for this method. When the residual drop:
few orders of magnitude, the non-linear local preconditioning matrix can be kept fixe
All other terms in the left-hand side of the system (7) are linear terms. This means t
the LU-decomposition for solving the tridiagonal block system can be stored in memc
for the different levels of grids. The computational cost for a flux evaluation is also ve
low since the Jacobians of the linear terms are also stored. Therefore, for one time ¢
only the non-linear convective contributions are recomputed and only a backsubstitutio
computed for the evaluation of one step in the multistage scheme. The gain in performe
using this approach is shown in Fig. 18.

7. COMPRESSIBLE FLOW

The compressible equations are given by

aFnu+aGm, oF, 0G,
aX ay X ay

J_J_Twé w\%) / > rz,"* 2‘6) 27-5j <“‘\}.’ ?j’. |g
0 10 15 \ 5

20 2

FIG. 16. Isobar contours for the backward facing step problem.
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FIG.17. Convergence results for the backward facing step problem, comparison of the MG point and the |
line method on two different grids.
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wherez is the stress tensor agds the heat flux vectoi is the total enthalpy given by

- %19 + W2+,

7.1. Preconditioning

The method described for incompressible flow can easily be extended to low-Ma
number flow. The artificial-compressibility method causes the convective and pseu
acoustic wave speeds to be in the same order of magnitude. Therefore, for compres
flow, any preconditioner can be used which also scales the convective and the acol
speeds. We used a preconditioner based on Weiss and Smith’s preconditioner [17],

® 0O O oT
re ®u p 0 pTu
N Ouv 0 »p PTV ’

OH -1 pu pv prH+ pCp

where® =1/82 — pr /pC,. This preconditioner is equivalent to the extension of the Chori
preconditioner [3] to compressible flow applications by Turkel [4, 16], but is formulated
the so-called viscous variable®, = [p u v T]", whereT denotes the temperature and
T the transposed vectdZ,, is the specific heat at constant pressure @nis the derivative

of p with respect tor .

We simplified the preconditioner by setting to zero the terms with velocity componen
By doing this, the eigenvalues of the preconditioned system are still of the same orde
magnitude, but they cannot be written analytically. Further, for small velocities, so for sm
B, 6 can be approximated by &2 and®H — 1~ OH.

The final preconditioner used for the compressible system is

(S} 00 PT
0 0 0
r= p : (22)
0 0 p 0
OH 0 0 prH 4+ pC,

where® = 1/82. With this form of the preconditioner a comparison between incompres
ible flow and low-Mach-number compressible flow can be made directly.

It is clear that the momentum equations update the velocity components, as for inc
pressible flow. The relative importance of the temperature update in the energy equa
with respect to the temperature update in the continuity equation is given by

Uaa/Tar prH+pCp [ ¥ _1M2

Fia/T11 OH C) 2 ’

whereM is the Mach number. This shows that in the low-Mach-number limit the ener
equation updates the pressure with this kind of preconditioning. Once the pressure upd:
known, the continuity equation updates the temperature. This is only true for inviscid flc
because due to the implicit treatment of the temperature diffusion term for viscous fl
both the continuity equation and the energy equation update a combination of tempere
and pressure.
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7.2. Discretization

7.2.1. Inviscid subsystemAs for incompressible flow, the convective part of the mo-
mentum equation is discretized with velocity upwinding:

0 0

pu pu
Foe = Uitr2| 4y o Goe = V2| 4y

01k 01k

The pressure term in the momentum equations and the velocity terms in the continuity
energy equations are treated like the pseudo-acoustic part in incompressible flow anc
discretized centrally.

In the previous section it was shown that for small velocities, the energy equatior
updating the pressure in pseudotime. Therefore, by comparison with incompressible f
the question can be raised if the energy equation also expresses that the divergence
velocity fieldV - u goes towards zero for small velocities. The momentum equation caus
a scaling ofV p with a factorM2. This is true even if the density does not scale with the
Mach number, which can be the case across streamlines. The energy equation can be w
as

V-(pHU) = pHV-u+u-V(pH) =0, (23)

with pH = ﬁ p + 1/2pu?, andy =C,/C,, whereC, is the specific heat at constant
temperature.

SinceV (pH) is proportional tov p for vanishing velocity, the second term in (23) scales
with M2 so that alsdv - u scales withM?3. This shows that the energy equation expresse
thatV -u is going to zero. So, the energy equation for low-Mach-number compressible fl
takes over the role of the continuity equation for incompressible flow. Further we rem:
that from the continuity equation

V. (pu) =pV-u+u-Vp=0

follows that differences in density scale with? along streamlines.

Therefore the dissipation term that was introduced in the continuity equation for inco
pressible flow has to be introduced in the energy equation for low-Mach-number comp
sible flow. For dimensional reasons it must be multiplied with enthalpy,

0
0
Fd1i+1/2 =34 0

Hi1/2 25"

wheregy is given bygx = wy + % as for incompressible flow. Agaim, can be chosen
either as a global velocity or as a local velocity. A similar expression holds{er,, ,.

In the previous section was shown that with the current preconditioner (22) the col
nuity equation causes an update for temperature. Therefore we have to add a temper
dissipation term in the continuity equation. By doing this, the physical diffusion term
temperature in the energy equation will not be disturbed.
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Analytically, the continuity equation scales with®. However, due to the introduction of
the dissipation term for the pressure in the energy equation, only the sum of the diverge
of the velocity field and the dissipation term for pressure scalesMitiTherefore the same
dissipation term for pressure has to be added to the continuity equation. The dissipa
term for the temperature is multiplied with a velocity coefficient, since it has to scale wi
M?3. No temperature dissipation is allowed across streamlines in an aligned flow. So, a g
choice of the velocity coefficient is the normal projection of the local velocity on the edge
the control volume. In order to make the temperature dissipation term dimensionally corl
it is multiplied with pr. In this way the ratio of pressure and temperature dissipation terr
corresponds with the ratio of pressure and temperature updates given by the preconditi

PP 4 fulpr (Trsa = T)
s 0
0
0

Fd2i+l/2 =

Guz;.,, Is computed in a similar way.

If the dissipation term for pressure in the continuity equation did not correspond to t
dissipation term in the energy equation, it would not be possible to obtain a tempera
field that scales wittM? for Mach numbers going to zero.

7.2.2. Viscous subsystemThe viscous subsystem is more complex for the compressib
equations than for the incompressible equations. Normal derivatives are discretized a
incompressible flow. The discretization of the tangential derivatives is shown in the n
example. Consider the discretizationggfalong the edge+ 1/2 of the control volume in
Fig. 1. The tangential derivative is then discretized as

9V Vig12j+1/2 = Vit1/2j-1/2
Y  Yitrzj+12 — Yit12j-12

with
1
Vig1/2,j4+1/2 = Z_(Ui + Vig1+ Vi 1+ vigr 1)

and the other terms are computed in a similar way.

7.2.3. Discretization in pseudotimeThe discretization in pseudotime is done with the
preconditioner (22). The acoustic flux is treated implicitly in the direction of the shorte
grid distances. Since this flux is non-linear for compressible flow, a linearization is heed
Similarly as for incompressible flow, the acoustic flux on time lgweh- 1)* is written as

p(m) pM+D”
(m+1)* __ 0
a2 p(m+1)*

(M H (M), (m-+1)* 12
The linearization is only valid for low-speed flow.

Finally, the normal viscous fluxes are treated like the viscous fluxes for incompressi
flow. The tangential fluxes are treated explicitly.

No separate stability analysis is done for compressible flow.cflheumber could not
be larger than 1.6.
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FIG.19. Convergence results for the compressible backward facing step problem, comparison of the MG
method on two different grids for different Mach numbers.

7.2.4. Backward facing step (compressible flowle use the same grids and the same
global reference velocity, for the pressure dissipation term as in the incompressible te
case. On each grid the flow is calculated with the semi-implicit line method for Mach 0.1 &
Mach 10°°. Figure 19 shows the convergence results. There is no difference in converge
behaviour between the two different grids. The difference in Mach number only cause
shift in the magnitude of the residual; convergence is achieved in an equal number of w
units. The asymptotic convergence rate for all cases is 0.7455 per MG cycle.

Figure 20 shows the streamline patterns for both Mach numbers. No difference car
seen between the two patterns. There is also no difference with the streamline patter
incompressible flow (Fig. 15).

Figure 21 shows the dimensionless isobars (21) for both Mach numbers. Again no dif
ence can be seen with the result for incompressible flow (Fig. 16). This shows that pres
differences are scaled witid 2.

-2 0 2 4 6 8 10 12

FIG. 20. Streamline pattern for the compressible backward facing step problem. Top, Matbafiom,
Mach 10°°,
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FIG. 21. Isobar contours for the compressible backward facing step problem. Top, Magthafiom, Mach
10°°.

Figure 22 shows isotherms for both Mach numbers. At the iMet {10) a uniform
temperature field is prescribed. The temperatures are made dimensionless by

- R(T - T,
T —Rg "1
max

whereT, represents the temperature at the corner. From this figure it can be seen that
temperature differences are scaled WRA.

7.2.5. Flow in a thermally driven cavity.The final test problem considers a buoyancy-
driven flow in a square cavity [1, 2]. The configuration consists of two vertical walls at ter
peraturel,, andT; and two adiabatic horizontal walls. It is known that this problem exhibit
complex flow features depending on the Rayleigh numia= p?gB(Th — Tc)L3Cp/
uk), the aspect ratio of the cavity and a temperature difference parametdi, — T;)/

(Th + To)). Herep is the thermal expansion coefficiegtjs the magnitude of the gravita-
tional field, L is the length of the cavity walls, and andk are the dynamic viscosity and
thermal conductivity, respectively.

For the present study, three Rayleigh numb&a= 10, 1, and 16 are considered
with a temperature difference parameter 0.6. The aspect ratio of the present problem
is one and transport propertigs &ndk) are evaluated by using Sutherland’s law [18, 1].
The Prandtl number based on reference transport properties is 0.71x8Buniform
grid and a local reference velocity, for the pressure dissipation term are used for al
cases.

0 5 10 15 20 25
3
—\> L
-2:
:Olr’o/z A& 6
0 / /
0 5 10 15 20 25

FIG. 22. Isotherm contours for the compressible backward facing step problem. Top, Mathbb@om,
Mach 10°°.
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: MG Line Method (Ra=1000, AR=1)

: MG Point Method (Ra=1000, AR=1)

: MG Line Method (Ra=1000, AR=1/4)

: MG Point Method (Ra=1000, AR=1/4)
: MG Line Method (Ra=100000, AR=1)

: MG Line Method (Ra=1000000, AR=1)

(5]
DO AW =

Log(Max(Residue})

L L L L [ L L L L 1 L : L L 1 L 1 L L 1
0 5000 10000 15000 20000
Workunits

FIG. 23. Convergence results for the thermally driven cavity flow problem With= 10°, 1(°, and 16.

For Ra=10? the convergence behaviour is compared with a calculation on & 321
grid (grid aspect ratio M). Convergence rates are shown in Fig. 23. The convergen
behaviour for the multigrid line method was essentially independent of Rayleigh numi
and grid aspect ratio. The asymptotic convergence rate achieveRaer10® and grid
aspect ratio equal to/4, is 0.7897 per MG cycle. The multigrid point method requirec
more work units but was faster in terms of CPU ®a= 10° with grid aspect ratio equal
to one. The convergence rate for this method slowed dowREpe 10° with grid aspect
ratio equal to 14.

Ra=10° Ra=10° Ra=10°

FIG.24. Temperature isolines and streamlines for a viscous flow in athermally driven cavgferl(?, 10°,
and 106.
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FIG. 25. Comparison of the Nusselt number with a correlation by Chenoweth and Paolucci [1].

Figure 24 shows temperature isolines and streamlineR&oe 10°, 1, and 16. The
accuracy of the numerical solutions is verified by comparing the Nusselt number at
left-side wall with a correlation by Chenoweth and Paolucci[1] in Fig. 25. Good agreeme
can be observed for all three cases.

8. CONCLUSIONS

A method of discretization of the incompressible and low-Mach-number compressi
Navier—Stokes equations is presented. The local preconditioning method is combined:
a line solver in order to remove the stiffness coming from high grid aspect ratios. This |
solver is used in a multistage stepping scheme and accelerated with the multigrid met
The different test cases with alignment of the flow to the grid and the use of a grid asg
ratio of 1000 show that the method is very robust and has a good performance.

As realistic flow problems, the flow through a backward facing step and the flow
a thermally driven cavity were computed. The results show that the accuracy of the
cretization method is very good. The convergence of the solution method is very fast
both incompressible and low-Mach-number compressible flows, independent of the
aspect ratio. The CPU cost of the incompressible method is extremely low, due to a cf
flux evaluation and due to the fact that the LU decomposition can be stored since all ter
which have to be treated implicitly, are linear.
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