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Discretization of viscous incompressible and viscous low-Mach-number flows
often leads to a system of equations, which is very difficult to solve. There are
two reasons. First, the use of high aspect ratio grids results in a very numerically
anisotropic behaviour of the diffusive and acoustic terms and second, in low-Mach-
number flow, the ratio of the convective and acoustic eigenvalues of the inviscid
system becomes very high. We implemented an AUSM based discretization method,
using an explicit third-order discretization for the convective part and a line-implicit
central discretization for the acoustic part and for the diffusive part. The lines are
chosen in the direction of the grid points with shortest connection. The precondi-
tioned semi-implicit line method is used in multistage form because of the explicit
third-order discretization of the convective part. Multigrid is used as an acceleration
technique. It is shown that the convergence is very good, independent of grid aspect
ratio and Mach number. c© 1999 Academic Press

Key Words:viscous incompressible flow; viscous low-Mach-number flow; multi-
grid method; high aspect ratio grid; preconditioning.

1. INTRODUCTION

Preconditioning of the incompressible [15, 17, 16] and compressible Navier–Stokes equa-
tions [2, 15, 7, 17, 9, 16] is used by many authors in order to accelerate convergence, espe-
cially for low-Mach-number flows. However, this technique does not always provide good
results on high aspect ratio grids, because of the stiffness introduced by the numerically
anisotropic behaviour of the diffusive and acoustic terms. For aspect ratios appropriate to
the flow, preconditioning can help to eliminate this stiffness [9]. However, a more robust
method consists in the use of an implicit line solver combined with multigrid [12].
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When standard flux-difference splitting is applied to the inviscid part of the compressible
flow equations, the numerical scheme becomes very stiff for low Mach numbers [10].
Therefore the splitting scheme must be adapted, i.e., the system must be split according
to its modified eigenvalues. The modified splitting is also necessary for accuracy [10, 8].
The reason is that the original flux-difference splitter is too dissipative in the streamwise
direction for low Mach numbers since the dissipation term scales with 1/M . Moreover, the
use of a flux-difference splitter leads to a computationally expensive technique.

In our work, the stiffness due to the grid aspect ratio is removed by the use of line meth-
ods. The low-Mach-number stiffness together with the loss of accuracy is eliminated by an
appropriate discretization of AUSM type (advectionupstreamsplitting method) and a local
preconditioning technique. Multigrid is used as a convergence accelerator.

The discretization is AUSM simplified by taking the limit for vanishing Mach number
and for constant density and extended by adding stabilization terms. There are two reasons
for formulating the discretization scheme in this way. First, the flux definition is extremely
cheap. It is much simpler than in a flux-difference scheme. It has a low cost compara-
ble to the original AUSM [11]. Second, the discretization has, by construction, the correct
physical behaviour for vanishing Mach number (low-Mach-number compressible flow) and
incompressible flow.

The purpose of the paper is to present a scheme of high quality and high efficiency for
low-speed applications with constant and varying density.

The method is illustrated with a backward facing step flow of an incompressible fluid
and a compressible fluid at low speed and by thermally driven cavity flow.

2. GOVERNING EQUATIONS

The two-dimensional steady Navier–Stokes equations in conservative form for an incom-
pressible fluid are

∂u

∂x
+ ∂v

∂y
= 0,

∂

∂x
u2+ ∂

∂y
uv + ∂

∂x
p′ = ν

(
∂2u

∂x2
+ ∂2u

∂y2

)
, (1)

∂

∂x
uv + ∂

∂y
v2+ ∂

∂y
p′ = ν

(
∂2v

∂x2
+ ∂2v

∂y2

)
,

whereu and v are the Cartesian components of velocity,p′ is the kinematic pressure
(p′ = p/ρ), p is the pressure,ρ is the density, andν is the kinematic viscosity.

The set of equations (1) can be written in system form as

∂Fc

∂x
+ ∂Fa

∂x
+ ∂Gc

∂y
+ ∂Ga

∂y
= ∂Fv

∂x
+ ∂Gv

∂y
,

whereFc andGc are the convective fluxes,Fa andGa are the acoustic fluxes, andFv and
Gv are the viscous fluxes,

Fc=
 0

u2

uv

 , Fa=
 u

p′

0

 , Fv =


0

ν ∂u
∂x

ν ∂v
∂x

 ,
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and

Gc=
 0

uv

v2

 , Ga=
 v

0
p′

 , Gv =


0

ν ∂u
∂y

ν ∂v
∂y

 .

A distinction is made between the convective and acoustic parts of the inviscid flux vector
because a different spatial and temporal discretization will be used for these parts.

3. DISCRETIZATION

Figure 1 shows a rectangular grid with constant mesh size1x and1y (Cartesian grid).
The control volumes are centerd around the vertices of the grid.

The discretization of the convective flux is based on velocity upwinding,

Fci+1/2 = ui+1/2

[
0
u
v

]
L/R

, Gcj+1/2 = v j+1/2

[
0
u
v

]
L/R

, (2)

where

(·)L/R =
{

(·)L if u1/2 > 0

(·)R otherwise

and

ui+1/2 = ui + ui+1

2
, v j+1/2 = v j + v j+1

2
.

We use a short notation for the subscripts. For instanceui, j is denoted byui or u j andui, j+1

is denoted byu j+1. The subscript which is not shifted with respect toi or j is omitted
(Fig. 1).

The left (L) and right (R) values are computed with the Van Leer-κ approach,

qL = qi + 1

4
[(1+ κ)(qi+1− qi )+ (1− κ)(qi − qi−1)],

(3)

qR = qi+1− 1

4
[(1+ κ)(qi+1− qi )+ (1− κ)(qi+2− qi+1)],

FIG. 1. Vertex-centerd control volume.
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with κ = 1/3 for third-order accuracy. For a first-order approach the left and right values
would be

qL = qi , qR = qi+1.

q stands for any of the three state variablesu, v, or p.
The acoustic flux is discretized in the central way:

Fai+1/2 =
 u

p′

0


i+1/2

, Gaj+1/2 =
 v

0
p′


j+1/2

.

The discretization of the convective and acoustic terms corresponds with the original
AUSM-scheme [11] if the energy equation is omitted, a constant density is assumed, and
the Mach number is going to zero.

The viscous flux is also discretized in the central way:

Fvi+1/2 =

 0

ν
ui+1− ui

1x

ν
vi+1− vi

1x

 , Gv j+1/2 =


0

ν
u j+1− u j

1y

ν
v j+1− v j

1y

 .

Since the pressure term is discretized in the central way, pressure stabilization is needed.
In the original AUSM-scheme there is a lack of pressure stabilization for Mach number
going to zero. Therefore a pressure-velocity coupling was added in a newer version of
the AUSM-scheme suitable for all speeds [6]. This pressure-velocity coupling consists of
an artificial diffusion added to the mass flux. As discussed by Edwards and Liou [6], this
term should scale inversely with the velocity magnitude. The same scaling of pressure-
velocity coupling is present in the preconditioned Roe scheme [17] or in the flux-difference
splitting for incompressible Navier–Stokes equations [5]. This pressure-velocity coupling
introduces a pressure diffusion in the continuity equation and an upwinding of the pressure
derivative in the momentum equations. However, the upwinding is only needed for high-
speed compressible flow.

Taking into account the previous remarks, only an artificial dissipation term for the
pressure is added in the continuity equation in the following way,

Fdi+1/2 =

 δ
p′i+1−p′i

βx

0
0

 , Gdj+1/2 =

 δ
p′j+1−p′j

βy

0
0

 ,

whereβx andβy have the dimension of velocity. We have taken

βx = wr + 2ν

1x
, βy = wr + 2ν

1y
,

whereδ= 1/2 andwr is a reference velocity, either chosen to be a global velocity or a
local velocity (

√
u2+ v2). For incompressible flow applications, we take a global reference

velocity as the maximum velocity in the flow field. This results in a linear dissipation term
with an advantage for implicit treatment of this term. For inviscid flow (i.e.,ν = 0), this term
corresponds with the dissipation term introduced by the flux-difference splitting method for
incompressible flow [5]. Following Weiss and Smith [17] and discussed by Merkleet al.
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[13], βx andβy are treated in such a way that they scale with the local diffusion velocities
ν/1x andν/1y when these terms become important.

The complete flux vectors become

F = Fc + Fa − Fv − Fd, G = Gc + Ga − Gv − Gd.

4. TIME-MARCHING METHOD

In this study we use a time-marching method in order to reach the steady state solution
of the incompressible Navier–Stokes equations. Since the discretization of the fluxes will
be partly explicit and partly implicit, we do not consider a transformation into the primitive
form of the equations. Applying the artificial-compressibility method to the conservative
form of the inviscid part of the Navier–Stokes equations gives

0
∂Q

∂τ
+ ∂Fc

∂x
+ ∂Fa

∂x
+ ∂Gc

∂y
+ ∂Ga

∂y
= 0.

Q is the vector of variables [p′, u, v]T . The preconditioning matrix0 is given by

0=


1
β2 0 0

0 1 0
0 0 1

 ,

whereβ has the dimension of velocity. The eigenvalues of the inviscid part of the precon-
ditioned system are given by

λ

(
0−1∂(nx F + nyG)

∂Q

)
= w, w + c, w − c, (4)

wherew = nxu + nyv, c =
√

w2+ β2, andnx andny denote an arbitrary direction with
n2

x+n2
y = 1. If β is of the same order of magnitude as the convective speed, all eigenvalues

are properly scaled in at least one direction.
This artificial-compressibility method will be used as a smoother for the multigrid, as is

shown in the next section. The artificial-compressibility method belongs to the family of
local preconditioning techniques. Local preconditioning is known to work well on isotropic
grids [9], but not always on non-isotropic grids, with high aspect ratios. This will be shown
in the Fourier analysis in the next section. It will also be shown that a semi-implicit dis-
cretization is needed in order to have a robust method suitable for high aspect ratio meshes.

4.1. Stepping in Pseudotime

A multistage stepping is used with four stages,

Q(0) = Qn

Q(1) = Q(0) + α1 cfl 1Q(0)

Q(2) = Q(0) + α2 cfl 1Q(1)

Q(3) = Q(0) + α3 cfl 1Q(2)

Q(4) = Q(0) + α4 cfl 1Q(3)

Qn+1 = Q(4),
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with {α1, α2, α3, α4} equal to{1/4, 1/3, 1/2, 1} and thecfl-number equal to 1.8. We denote
thiscfl-number as the globalcfl-number of the method. The1Q(m) of each stage is given by
1Q(m)= Q(m+1)∗ − Q(m) whereQ(m+1)∗ is computed with the semi-implicit point method
(10) or the semi-implicit line method (7).

The multistage semi-implicit method is accelerated with the multigrid technique. A full
approximation scheme is used in a W-cycle with four or five levels of grids. The computation
is started on the finest grid in order to show the full performance of the multigrid method.
For the restriction operator, full weighting is used. The prolongation is done with bilinear
interpolation. Two pre- and postrelaxations are done. The use of five levels of grids results
in a cost of 32.375 work units for each multigrid cycle, when one work unit consists of a
residual evaluation and an update, or a residual evaluation together with a restriction and a
prolongation.

4.2. Determination of the Pseudotime Step

Consider a uniform Cartesian mesh with constant1x, 1y. The time step1τ on this
mesh is computed as

1τ = 1

(u+ cx)/1x + (v + cy)/1y
,

with

cx =
√

(u2+ β2), (5)

and

cy =
√

(v2+ β2). (6)

Assume that the flow is inviscid and aligned to the x-direction, i.e.,v = 0. If β is chosen
in the order ofu, then all three eigenvalues (4) have the same order of magnitude in the
x-direction and all waves are convected into this direction with acfl-number in the order of
unity.

It must be stressed that if the allowablecfl-number becomes smaller, the convergence
will break down. This happens for large grid aspect ratios. We define the grid aspect ratio
gar for the Cartesian grid as

gar = 1x

1y
.

If gar is very large, then the allowable time step1τ is equal to1y/cy and the maximum
allowablecfl-number in the x-direction is

cflx =
(u+ cx)1τ

1x
= u+ cx

cy

1

gar
≈ 1

gar
.

This will lead to a breakdown of the convergence. It is shown in the Fourier analysis that
if the acoustic fluxes in the y-direction are discretized implicitly, the system stays stable if
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the time step definition is changed into

1τ = 1

(u+ cx)/1x + ω1v/1y
,

whereω1 is a scaling factor. If the flow is aligned to the x-direction, thencflx is equal to
unity. If the viscous terms are becoming important, the von Neumann number determines
the maximum allowable time step

1τ = 1y2

2ν
,

andcflx will become small.
If the viscous terms are also treated with a line-implicit method in the y-direction, then

this von Neumann restriction on the time step disappears, and thecflx-number is again in the
order of unity. It is obvious that the acoustic and viscous terms need an implicit treatment
in the direction of the smallest grid distances. These parts consist of linear terms. The
convective part is non-linear and if an explicit treatment is used for this part, no Jacobians
have to be recomputed every time step in order to update the set of equations. An implicit
treatment of the convective part on high aspect ratio grids is not really necessary because
the ratio(u/1x)/(v/1y) can have the same values on an anisotropic grid as on an isotropic
grid with more alignment of the flow, where it is known that explicit methods work well
(e.g., the GAMM-bump test case can be solved without explicit preconditioned methods,
even in the low-speed limit [7]). Therefore, our strategy is a combination of an explicit local
preconditioning method and an implicit line method for the acoustic and viscous terms in
the direction of the smallest grid distances.

This semi-implicit line method for a grid with small cell dimensions in the y-direction is
given by (

0

1τ
+ 2ω2Ad + 2ω3Av

)(
Q(m+1)∗ − Q(m)

)+ ∂F (m)
c

∂x
+ ∂F (m)

a

∂x

− (Av + Ad)
(
Q(m)

i−1, j − 2Q(m)
i, j + Q(m)

i+1, j

)+ ∂G(m)
c

∂y
+ ∂G(m+1)∗

a

∂y

− (Bv + Bd)
(
Q(m+1)∗

i, j−1 − 2Q(m+1)∗
i, j + Q(m+1)∗

i, j+1

) = 0, (7)

whereAv, Bv, Ad, andBd are

Av =

0 0 0
0 ν

1x2 0

0 0 ν

1x2

 , Bv =


0 0 0
0 ν

1y2 0

0 0 ν

1y2

 ,

and

Ad=


δ

βx1x 0 0

0 0 0
0 0 0

 , Bd=


δ

βy1y 0 0

0 0 0
0 0 0

 ,
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and where

β =
√

u2+ v2+ 2ν

1x
, (8)

and

1τ = 1

(u+ cx)/1x + ω1v/1y
, (9)

with cx computed as in Eq. (5) withβ given by (8).
The introduction of the factorω1 results in a different scaling of the convective velocity

in the direction of the implicit lines (y-direction) with respect to the convective velocity
in the x-direction. The introduction of the factorsω2 andω3 allows a different scaling of
the artificial damping term and the viscous terms with respect to the convective terms. The
scaling factorsω1, ω2, andω3 are available for optimization of the smoothing rate of the
method. This optimization is treated in the next section.

In (8) there is no viscous contribution from the y-direction and in (9) there is no acoustic
contribution from the y-direction because these terms are treated implicitly in this direction.

In order to illustrate the performance of the method we also consider the semi-implicit
point method. For this method the equations are given by(

0

1τ
+ 2ω2(Ad + Bd)+ 2ω3(Av + Bv)

)(
Q(m+1)∗ − Q(m)

)
+ ∂F (m)

c

∂x
+ ∂F (m)

a

∂x
− (Av + Ad)

(
Q(m)

i−1, j − 2Q(m)
i, j + Q(m)

i+1, j

)
+ ∂G(m)

c

∂y
+ ∂G(m)

a

∂y
− (Bv + Bd)

(
Q(m)

i, j−1− 2Q(m)
i, j + Q(m)

i, j+1

) = 0, (10)

where

β =
√

u2+ v2+ 2ν

1x
+ 2ν

1y
, (11)

and

1τ = 1

(u+ cx)/1x + (v + cy)/1y
,

with cx andcy computed as in Eqs. (5) and (6) withβ given by (11).
Also here we have introduced the scaling factorsω2 andω3 for the scaling of the artificial

damping term and the viscous terms. Since the acoustic terms are centrally discretized,
these terms are treated explicitly in the semi-implicit point method.

5. FOURIER ANALYSIS

The schemes of the previous section are now analysed with the Fourier method. We
assume a rectangular grid without stretching and with periodical boundary conditions. The
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stateQ can be written as the sum of the steady state solutionQ̄ and an error9 which is
function of the pseudotimeτ :

Q(x, y, τ ) = Q̄(x, y)+9(x, y, τ ). (12)

The error can be written as a sum of Fourier waves. The Fourier component with wave
numberωx in the x-direction and wave numberωy in the y-direction is written as

ψωx,ωy(x, y, τ ) = φ(τ)ej (ωx x+ωy y), (13)

where j stands for the imaginary unit. The substitution of Eq. (12) into the system of
Eqs. (10) results in a system of equations for the error. The linear terms result in identical
expressions. The quadratic terms need some explanation.

As an example, the error due to the quadratic term

∂u2

∂x

is worked out. Using (2), the first-order discretization of this term is written for a positive
velocity componentu as

1

1x

(
ui+1/2ui − ui−1/2ui−1

)
. (14)

For the non-linear terms we assume a uniform flow field. Thenu can be written as

uk = ū+ ψk,

wherek stands for any subscript and̄u is constant. Using the previous expression, Eq. (14)
becomes

1

1x
ū
(
ψi+1/2− ψi−1/2+ ψi − ψi−1+O(ψ2)

)
.

By introducing Eq. (13), the coefficient of the termej (ωx x+ωy y) can be written as

φ(t)ū(ce(θx, 1x)+ up(θx, 1x)),

where

ce(θ, 1s) = ej θ − e− j θ

21s
,

and

up(θ, 1s) = 1− e− j θ

1s
k(θ),

with θ = ω1s andk(θ) = 1 for the first-order upwind scheme. For the Van Leer-κ method
(3), k(θ) is given by

k(θ) = 1+ 1

4
[(1+ κ)(ej θ − 1)+ (1− κ)(1− e− j θ )].
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Similar equations hold if the velocity componentu is negative. For completeness we already
define vi(θ, 1s) needed for the viscous contributions and the artificial dissipation term as

vi(θ, 1s) = −e− j θ + 2− ej θ

1s2 .

Neglecting higher-order terms in the error component, the following system for the error
has to be solved for each stage in the time-marching procedure

P̂19 + Ĉ9 = 0. (15)

The Fourier symbolF(θx, θy) is then given by

F(θx, θy) = −cflP̂(θx, θy)
−1Ĉ(θx, θy).

The expressions for̂P are dependent on the time-marching method and are given below.
The expression for̂C is given by

Ĉ = Â+ B̂, (16)

whereÂ contains the convective term̂Ac, the acoustic term̂Aa, the diffusion termÂv, and
the artificial dissipation term̂Ad in the x-direction, and̂B contains the corresponding terms
in the y-direction,

Â = Âc + Âa + Âv + Âd,

B̂ = B̂c + B̂a + B̂v + B̂d,

where

Âc =

0 0 0
0 ū (up(θx, 1x)+ ce(θx, 1x)) 0

0 v̄ce(θx, 1x) ūup(θx, 1x)

 ,

B̂c =

0 0 0
0 v̄up(θy, 1y) ūce(θy, 1y)

0 0 v̄(up(θy, 1y)+ ce(θy, 1y))

 ,

and

Âa=

 0 ce(θx, 1x) 0

ce(θx, 1x) 0 0

0 0 0

 , B̂a=

 0 0 ce(θy, 1y)

0 0 0
ce(θy, 1y) 0 0

 ,

and

Âv =

0 0 0
0 νvi(θx, 1x) 0

0 0 νvi(θx, 1x)

 , B̂v =

0 0 0
0 νvi(θy, 1y) 0

0 0 νvi(θy, 1y)

 ,
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and

Âd=


δ
βx

vi(θx, 1x)1x 0 0

0 0 0
0 0 0

 , B̂d=


δ
βy

vi(θy, 1y)1y 0 0

0 0 0
0 0 0

 .

For the semi-implicit line method the matrix̂P is given by

P̂ = 0̂L + B̂a + B̂v + B̂d, (17)

with

0̂L = 0

1τ
+ 2ω2Ad + 2ω3Av

=


1

β21τ
+ ω2

2δ
βx1x 0 0

0 1
1τ
+ ω3

2ν

1x2 0

0 0 1
1τ
+ ω3

2ν

1x2

 .

For the semi-implicit point method̂P is equal to0̂P, with

0̂P = 0

1τ
+ 2ω2(Ad + Bd)+ 2ω3(Av + Bv)

=


1

β21τ
+ ω2

(
2δ

βx1x + 2δ
βy1y

)
0 0

0 1
1τ
+ ω3

(
2ν

1x2 + 2ν

1y2

)
0

0 0 1
1τ
+ ω3

(
2ν

1x2 + 2ν

1y2

)
 .

(18)

5.1. Generic Test Cases

Different flow situations are analyzed and a comparison is made between the semi-implicit
point method and the semi-implicit line method. In the next figures, eigenvalues of the
Fourier symbolF(θx, θy) for θx ∈ [0, 2π ] with steps of1θx =π/20 and forθy= 0, π/2, π ,
and 3π/2 are computed and shown in the complex plane. The stepping in pseudotime is done
with a four-stage method with standard coefficients. The stability domain of this method
together with the eigenvalues of the Fourier symbol is shown in the left panels of the figures.
In the right panels of the figures the amplification factor is shown for the algorithm using
either the semi-implicit point or line method with multistage pseudotime stepping. For each
(θx, θy) combination the maximum modulus of the eigenvalues of the amplification matrix
is shown. All Fourier symbols and stability results are computed withcfl-number equal
to 1.8. The samecfl-number is used for the experimental verification of the different test
cases.

5.1.1. Inviscid flow aligned to the x-direction, grid aspect ratio gar= 1. Figure 2 shows
good damping in theθx-direction for both the point and the line method. Forθx = 0 one
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FIG. 2. Stability results for inviscid flow aligned to the x-direction,gar = 1; top, the point method; bottom,
the line method; left, Fourier symbols in the complex plane; right, amplification factor.

eigenvalue of thêC matrix of Eq. (15) becomes zero. This is due to the alignment. In this
case(θx = 0, v= 0) the matrixĈ becomes

Ĉalignment=


δ
βy

vi(θy, 1y)1y 0 ce(θy, 1y)

0 0 ūce(θy, 1y)

ce(θy, 1y) 0 0

 .

This matrix has a column of zeroes and so one eigenvalue is zero. The amplification
matrix P̂−1Ĉ has also a zero eigenvalue and therefore its amplification factor is equal to 1.
A zero eigenvalue means a loss of coupling for the correspondig eigenvector combination
of the variables. This is often seen as the reason for slow convergence in aligned flow. This
would mean that any flow where most of the flow field is aligned to the grid would cause
slow converge. However, computations show that this is not correct.

For the experimental verification, we consider an inviscid channel flow with grid aspect
ratio equal to unity. At the inlet, uniform flow is imposed and pressure is extrapolated from
the flow field. At the outlet, pressure is imposed and velocity is extrapolated. At the solid
walls, pressure and tangential velocity component are extrapolated and normal velocity
component is set to zero. All extrapolations are done piecewise constant. As initial flow
conditions, pressure is set equal to zero and velocity components equal to 0.1 of the inlet
velocity. The grid has 65 nodes in the x-direction (from inlet to outlet) and also 65 nodes
in the y-direction (between the two solid walls).
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FIG. 3. Convergence results for inviscid flow aligned to the x-direction,gar = 1.

Figure 3 shows the convergence of the point and the line method in single grid (SG) and
in multigrid formulation (MG). Five levels of grids were used in a W-cycle for the MG
method.

The MG line method has the best performance in terms of work units. However, on the
Cartesian grid, the cost of a flux evaluation is very low with respect to the cost the calculation
of an update. Therefore the MG point method is almost three times faster in CPU than the
MG line method.

The good performance in the aligned case comes from the role of the boundary conditions.
Dirichlet boundary conditions are used here. The Dirichlet boundary condition at the inlet for
velocity components and the Dirichlet boundary condition at the outlet for pressure together
with the strong coupling of the variables in the flow direction eliminate the unsmoothed
eigenvector combination. This effect is not visible in the Fourier analysis, which assumes
periodic boundaries. The strong coupling in the flow direction is a consequence of the
preconditioning. As already remarked, by proper choice ofβ, the eigenvalues of (4) can
be in the same order of magnitude. In this case, the Fourier symbols for givenθy all come
together forθx =π in a zone where good damping can be assured as is clear in Fig. 2.

This can also explain why in compressible flow any local time-marching method works
well as long as the Mach number is high enough. In low-Mach-number flow the convective
eigenvalues are scaled down with respect to the acoustic eigenvalues and the convergence is
deteriorated. However, with appropriate preconditioning the problem can be solved, despite
the fact that in aligned flow the eigenvalues in the normal direction still have a different
order of magnitude.

5.1.2. Inviscid flow aligned to the x-direction, grid aspect ratio gar= 1000. Figure 4
shows the stability results for this flow situation. Due to the high grid aspect ratio, the time
step is reduced for the point method because of the stability restriction due to the acoustic
system in the y-direction. This was already discussed in Subsection 4.2. In the whole(θx, θy)

plane the amplification factor is around unity. The convergence will be strongly deteriorated.
If the line method is used with lines in the direction of the smallest grid size (y-direction),
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FIG. 4. Stability results for inviscid flow aligned to the x-direction,gar = 1000; for caption see Fig. 2.

the influence of the grid aspect ratio disappears completely. Convergence for this case is
comparable to the case with grid aspect ratio equal to unity.

Figure 5 shows the convergence results for this test case. As initial flow,u-velocity is
set equal to 0.1 andv-velocity equal to 0.1/gar of the inlet velocity. The MG and SG line

FIG. 5. Convergence results for inviscid flow aligned to the x-direction,gar = 1000.
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FIG. 6. Stability results for inviscid flow aligned to the y-direction,gar = 1000; for caption see Fig. 2.

methods perform very well as expected. The point method shows almost no convergence
and its MG formulation diverges because there is no smoothing at all.

5.1.3. Inviscid flow, aligned to the y-direction, grid aspect ratio gar= 1000. Figure 6
shows that both the point and the line method give good damping in the streamwise direction.

The determination of the pseudotime step by (9) is in this case strongly dependent on the
convective velocity componentv. We observed that the line method was stable for acfl-
number equal to 1. However, by taking thecfl-number equal to 1.8 corresponding with the
previous test cases, the line method became unstable. By setting the scaling factorω1 = 2,
the instability disappeared. As already mentioned above, there is a different scaling of the
convective termsu andv for the line method due to the different treatment of both velocities
in the computation of the pseudotime step (9). The introduction of the scaling factor can be
seen as a tuning of the globalcfl-number to thecfl-number for the convective subsystem in
the y-direction.

The convergence plots for this test case are shown in Fig. 7. There is almost no difference
between the point and the line methods. There is only an acceleration of the MG method
for the first residual drop of six orders of magnitude. Then there is a breakdown of the MG
performance with respect to the SG performance.

5.1.4. Viscous flow, aligned to the x-direction, grid aspect ratio 1000, Re1x = 100. Fig-
ure 8 shows that for the point method in this case, good damping is obtained in the y-
direction. In the streamwise direction, there is no damping due to the small time step. As
explained in Subsection 5.1.1 by using a Dirichlet boundary condition in the y-direction,
good convergence can be obtained. However, pressure boundary conditions at solid walls
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FIG. 7. Convergence results for inviscid flow aligned to the y-direction,gar = 1000.

are of Neumann type. The pressure level on lines in the y-direction has to be determined by
information exchange along the x-direction but since there is no damping in this direction,
convergence will be deteriorated. For the line method, the time step can be taken much
larger so that there is very good damping in both directions.

FIG. 8. Stability results for viscous flow aligned to the x-direction,gar = 1000, Re1x = 100; for caption see
Fig. 2.
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FIG. 9. Convergence results for viscous flow aligned to the x-direction,gar = 1000 in the whole flow field;
c.e., explicit discretization of convective terms; c.i., implicit discretization of first-order part of convective terms.

For the experimental verification, at the lower boundary, the velocity is set to zero. At the
upper wall a symmetry plane is assumed. So for this wall, the same boundary conditions
hold as in the previous cases. At the inlet, a parabolic inlet profile is prescribed. For the
construction of the grid, we consider two cases. The first grid has a grid aspect ratio equal
to 1000 in the whole domain. The second grid has a grid aspect ratio equal to 1000 at the
lower wall but is stretched towards the upper wall, where it has a grid aspect ratio equal to
1. As the initial flow condition, pressure and velocity are set equal to zero.

Figure 9 shows the convergence plots for the first grid. The MG line method with explicit
discretization of the convective terms shows a slow convergence in the beginning. This is
due to the fact that during the initial convergence phase the velocity in the field is not aligned
with the grid and that in this temporary flow direction no Dirichlet boundary conditions
are present for the pressure. The difference with the previous test cases is the parabolic
inlet profile, which causes rather high velocities in the y-direction in the beginning of the
computation. For instance, whenv becomes only one-tenth ofu, then the flow is to be seen
as almost aligned with the y-direction because

v

u

1x

1y
= 100À 1.

In that case there is no good damping in the x-direction, i.e., the direction normal to the flow
(smoothing is given by Fig. 6 whenθx- andθy-axes are exchanged). The lack of smoothing in
the x-direction is due to the fact that the convective terms are treated explicitly, also in the line
method. Therefore, if there is an importantv-velocity component, the time step is restricted
by thisv-component (9), and causes a smallcfl-number in the x-direction. Only if the flow
is sufficiently aligned in the x-direction, thecfl-number in the x-direction is high enough to
allow good smoothing. This happens in the test case when the residual has dropped a few
orders of magnitude. From this point, the residual shows normal convergence behaviour.
In order to avoid this problem, the first-order part of the convective terms can be linearized
and treated implicitly in the line method (c.i. in Fig. 9). There is a gain in work units but no
gain is achieved in terms of CPU for this test case, because the disadvantage with implicit
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treatment of convective terms is the recalculation of the LU-decomposition of the block-
tridiagonal system. With explicit treatment of the convective terms, only the backsubstitution
is calculated every iteration. The reason is that, apart from the preconditioning matrix, all
matrices in the left-hand side are constant. After a few initial iterations, the preconditioning
matrix can be frozen and the LU-decomposition does not have to be recalculated. The saving
in computing time using the latter approach will be illustrated in Section 6. Therefore we
do not consider the inclusion in the left-hand side of the non-linear convective terms in the
y-direction. This would only give an improvement for the very particular test case treated
here, but is not necessary in more general flow situations.

As already discussed above, there is a strong coupling in the y-direction due to the high
grid aspect ratio. The amplification factor is significantly below unity, compared with Fig. 4,
due to the importance of the viscous terms. However, the pressure boundary condition in
this direction is a Neumann boundary condition both on the lower and the upper wall.
Therefore the pressure offset for this line is determined by the neighbouring lines in the
x-direction, where there is a very weak coupling for the point method. This explains why
the convergence is deteriorated for the point method.

A flow situation, where the grid has a constant aspect ratio along the total height, is very
rare. Mostly stretched grids are used with a high aspect ratio at the boundaries, but a normal
aspect ratio in the middle of the flow field. The convergence results for the same test case,
but with the second grid, are shown in Fig. 10. In the region of the high aspect ratio at
the lower wall, there exists a strong coupling in the y-direction and so good damping in
the y-direction is obtained. In the region with smaller grid aspect ratio, there is damping
in all directions. Therefore the pressure level is in this case determined by information
exchange along the x-direction. This region then acts as a Dirichlet boundary condition for
the underlying region with high grid aspect ratio. Therefore the convergence is good, and
even the point method converges.

5.1.5. Viscous stagnation zone, grid aspect ratio gar= 1. We consider nowu= v= 0.
Figure 11 shows good damping in the x- and the y-direction for both the point and the line

FIG. 10. Convergence results for viscous flow aligned to the x-direction,gar = 1000 at lower wall;gar = 1
at upper wall.



328 VIERENDEELS, RIEMSLAGH, AND DICK

FIG. 11. Stability results for viscous stagnation zone,gar = 1; for caption see Fig. 2.

method. For stability reasons, the scaling factorsω2 andω3 are chosen equal to 1.5 and 1,
respectively, for the point method. For the line method bothω2 andω3 are chosen equal
to 1. The introduction of these scaling factors is needed because the viscous terms have
another scaling in the Fourier space than do the convective terms. The globalcfl-number of
1.8 is in this way tuned to an appropriatecfl-number for the artificial damping and viscous
terms. The use of the termcfl-number seems to be a little strange for viscous terms, but in
fact, if a local diffusion velocity is seen as

vdiff = 2ν

1x
,

then acfl-number computed on this velocity is equal to the viscous Von Neumann num-
berσ

cfl = vdiff1τ

1x
= 2ν1τ

1x2 = σ.

We first explain the choice ofω2 andω3 for the point method. Withu = v = 0 and for
θx = θy = π the matricesP̂ (18) andĈ (16) are given by

P̂=


1
ν

(
1
2 + ω2

)
0 0

0 2ν(1+ ω3)
(

1
1x2 + 1

1y2

)+ 4ν
1x1y 0

0 0 2ν(1+ ω3)
(

1
1x2 + 1

1y2

)+ 4ν
1x1y


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and

Ĉ=


2
ν

0 0

0 4ν
(

1
1x2 + 1

1y2

)
0

0 0 4ν
(

1
1x2 + 1

1y2

)
 . (19)

For a high grid aspect ratio and withω2 = 1.5 andω3 = 1,−P̂−1Ĉ is given by

−P̂−1Ĉ=
−1 0 0

0 −1 0
0 0 −1

 , (20)

so that for a globalcfl-number of 1.8 all eigenvalues lie together in the complex plane in
point (−1.8, 0), where there is good damping. For a grid aspect ratio equal to 1,−P̂−1Ĉ is
given by

−P̂−1Ĉ=

−1 0 0

0 − 2
3 0

0 0 − 2
3


and also in this case all eigenvalues lie in a region in the complex plane where there is good
damping.

For the line method, withu = v = 0 andθx = θy = π , theĈ-matrix is the same as (19).
The P̂-matrix (17) is given by

P̂=


1
ν

(
3
2 + ω2

2

)
0 0

0 2ν(1+ ω3)
1

1x2 + 4ν

1y2 0

0 0 2ν(1+ ω3)
1

1x2 + 4ν

1y2

 .

For ω2 = ω3 = 1, the P̂-matrix is identical to theĈ-matrix, so that, independent of the
grid aspect ratio−P̂−1Ĉ is given by (20). The eigenvalues lie in a region where there is
good damping forcfl= 1.8. We remark that the precise values ofω2 andω3 are not very
critical. For instance, also for the point method, good damping is obtained forω2=ω3= 1.
In fact, it is often advantageous not to choose the factors too large. It is important that the
cfl-number can be rather large because the convergence speed is not only determined by
smoothing of error components but also by elimination of these through convection out of
the flow field. So, as a general rule,ω2 andω3 can be set equal to unity. These values are
used in the convergence tests.

Figure 12 shows the convergence plots for the viscous stagnation zone. As initial flow
conditions, the pressure is set to zero and the velocity components to 0.1ν/1x. A no
slip condition on velocity is used at the left, the lower, and the upper wall. The pressure is
prescribed at the right wall (maximum x). Both the point and the line methods are performing
very well. The MG formulation of both methods is very effective. This is not surprising
because in this case the equations are almost reduced to the equations of Laplace, for which
the MG is known to work very well.
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FIG. 12. Convergence results for viscous stagnation zone,gar = 1.

5.1.6. Viscous stagnation zone, grid aspect ratio gar= 1000. Again, in the Fourier
analysis the scaling factors are set toω2= 1.5 andω3= 1 for the point method and to
ω2=ω3= 1 for the line method.

Figure 13 shows that there is only damping in the y-direction for the point method. For
the line method there is good damping in both directions.

FIG. 13. Stability results for viscous stagnation zone,gar = 1000; for caption see Fig. 2.
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FIG. 14. Convergence results for viscous stagnation zone,gar = 1000.

The experimental verification in Fig. 14 shows a bad convergence for the point method.
As initial flow conditions, the pressure is set to zero, theu-velocity component to 0.1ν/1x,
and thev-velocity component to 0.1ν/1y. A no slip condition on velocity is used at the
left, the lower, and the upper wall. Pressure is prescribed at the right wall (maximum x).
There is a good damping in the y-direction but in this direction the boundary condition for
the pressure is a Neumann boundary condition. Therefore the convergence is deteriorated.
The line method shows a good convergence. This is expected because of the good damping
in both directions.

6. BACKWARD FACING STEP

The method is tested on a backward facing step problem. The height of the step is chosen
as one third of the channel height. We consider two grids. The first grid has 81× 49 nodes
and the second grid has 81×193 nodes. Both grids have the same distribution of points in
the x-direction. In the y-direction the second grid has four times more cells than the first
one. The highest aspect ratio on the first grid is about 35 and on the second grid 140. The
same multigrid method is used as described above, but only four levels of grids are used
instead of five.

Figure 15 shows the streamline pattern, obtained on the first grid, for Reynolds number

Reh = Umaxh

ν
= 150,

whereh is the height of the step andUmax is the maximum value of the velocity at the inlet
section. The streamlines were obtained by integration of the calculated velocity profiles and
made dimensionless by dividing by the inlet flow rate, so that the streamline corresponding
with the upper wall has the value 1. The reattachment length to step height ratio is about 6.
This result is in accordance with the experimental value [14].
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FIG. 15. Streamline pattern for the backward facing step problem, obtained at the finest grid.

Figure 16 shows the isobars, normalized according to

p̄ = Reh
p− pc

1/2ρU2
max

, (21)

wherepc is the corner pressure.
Figure 17 shows the convergence history for the MG point and the MG line method on

the two grids with different grid aspect ratios. It is clear that for the line method the grid
aspect ratio has no influence on the performance of the method, while for the point method
the convergence deteriorates when the grid aspect ratio becomes larger. The asymptotic
convergence rate for the line method is 0.5062 per MG cycle.

The computational cost is extremely low for this method. When the residual drops a
few orders of magnitude, the non-linear local preconditioning matrix can be kept fixed.
All other terms in the left-hand side of the system (7) are linear terms. This means that
the LU-decomposition for solving the tridiagonal block system can be stored in memory
for the different levels of grids. The computational cost for a flux evaluation is also very
low since the Jacobians of the linear terms are also stored. Therefore, for one time step,
only the non-linear convective contributions are recomputed and only a backsubstitution is
computed for the evaluation of one step in the multistage scheme. The gain in performance
using this approach is shown in Fig. 18.

7. COMPRESSIBLE FLOW

The compressible equations are given by

∂Fnv

∂x
+ ∂Gnv

∂y
− ∂Fv

∂x
− ∂Gv

∂y
= 0,

FIG. 16. Isobar contours for the backward facing step problem.
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FIG. 17. Convergence results for the backward facing step problem, comparison of the MG point and the MG
line method on two different grids.

with

Fnv =


ρu

ρuu+ p
ρuv

ρuH

 , Gnv =


ρv

ρuv

ρvv + p

ρvH

 ,

Fv =


0

τxx

τxy

uτxx + vτxy+ qx

 , Gv =


0

τyx

τyy

uτyx + vτyy+ qy

 .

FIG. 18. Convergence results for the backward facing step problem, MG line method with recalculation of
the LU-decomposition every time step, compared with storage of the LU-decomposition after an initial phase.
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whereτ is the stress tensor andq is the heat flux vector.H is the total enthalpy given by

H = γ

γ − 1

p

ρ
+ 1

2
(u2+ v2).

7.1. Preconditioning

The method described for incompressible flow can easily be extended to low-Mach-
number flow. The artificial-compressibility method causes the convective and pseudo-
acoustic wave speeds to be in the same order of magnitude. Therefore, for compressible
flow, any preconditioner can be used which also scales the convective and the acoustic
speeds. We used a preconditioner based on Weiss and Smith’s preconditioner [17],

0=


2 0 0 ρT

2u ρ 0 ρTu

2v 0 ρ ρTv

2H − 1 ρu ρv ρT H + ρCp

 ,

where2= 1/β2− ρT/ρCp. This preconditioner is equivalent to the extension of the Chorin
preconditioner [3] to compressible flow applications by Turkel [4, 16], but is formulated in
the so-called viscous variables:Qv = [ p u v T ]T , whereT denotes the temperature and
T the transposed vector.Cp is the specific heat at constant pressure andρT is the derivative
of ρ with respect toT .

We simplified the preconditioner by setting to zero the terms with velocity components.
By doing this, the eigenvalues of the preconditioned system are still of the same order of
magnitude, but they cannot be written analytically. Further, for small velocities, so for small
β, θ can be approximated by 1/β2 and2H − 1≈ 2H .

The final preconditioner used for the compressible system is

0=


2 0 0 ρT

0 ρ 0 0

0 0 ρ 0

2H 0 0 ρT H + ρCp

 , (22)

where2 = 1/β2. With this form of the preconditioner a comparison between incompress-
ible flow and low-Mach-number compressible flow can be made directly.

It is clear that the momentum equations update the velocity components, as for incom-
pressible flow. The relative importance of the temperature update in the energy equation
with respect to the temperature update in the continuity equation is given by

044/041

014/011
= ρT H + ρCp

2H

/
ρT

2
≈ γ − 1

2
M2,

whereM is the Mach number. This shows that in the low-Mach-number limit the energy
equation updates the pressure with this kind of preconditioning. Once the pressure update is
known, the continuity equation updates the temperature. This is only true for inviscid flow,
because due to the implicit treatment of the temperature diffusion term for viscous flow,
both the continuity equation and the energy equation update a combination of temperature
and pressure.
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7.2. Discretization

7.2.1. Inviscid subsystem.As for incompressible flow, the convective part of the mo-
mentum equation is discretized with velocity upwinding:

Fci+1/2 = ui+1/2


0
ρu
ρv

0


L/R

, Gcj+1/2 = v j+1/2


0
ρu
ρv

0


L/R

.

The pressure term in the momentum equations and the velocity terms in the continuity and
energy equations are treated like the pseudo-acoustic part in incompressible flow and are
discretized centrally.

In the previous section it was shown that for small velocities, the energy equation is
updating the pressure in pseudotime. Therefore, by comparison with incompressible flow,
the question can be raised if the energy equation also expresses that the divergence of the
velocity field∇ ·u goes towards zero for small velocities. The momentum equation causes
a scaling of∇ p with a factorM2. This is true even if the density does not scale with the
Mach number, which can be the case across streamlines. The energy equation can be written
as

∇ · (ρHu) = ρH∇ · u+ u · ∇(ρH) = 0, (23)

with ρH = γ

γ−1 p + 1/2ρu2, andγ =Cp/Cv, whereCv is the specific heat at constant
temperature.

Since∇(ρH) is proportional to∇ p for vanishing velocity, the second term in (23) scales
with M3 so that also∇ ·u scales withM3. This shows that the energy equation expresses
that∇ ·u is going to zero. So, the energy equation for low-Mach-number compressible flow
takes over the role of the continuity equation for incompressible flow. Further we remark
that from the continuity equation

∇ · (ρu) = ρ∇ · u+ u · ∇ρ = 0

follows that differences in density scale withM2 along streamlines.
Therefore the dissipation term that was introduced in the continuity equation for incom-

pressible flow has to be introduced in the energy equation for low-Mach-number compres-
sible flow. For dimensional reasons it must be multiplied with enthalpy,

Fd1i+1/2 = δ


0
0
0

Hi+1/2
pi+1−pi

βx

 ,

whereβx is given byβx = wr + 2ν
1x as for incompressible flow. Againwr can be chosen

either as a global velocity or as a local velocity. A similar expression holds forGd1 j+1/2.
In the previous section was shown that with the current preconditioner (22) the conti-

nuity equation causes an update for temperature. Therefore we have to add a temperature
dissipation term in the continuity equation. By doing this, the physical diffusion term of
temperature in the energy equation will not be disturbed.
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Analytically, the continuity equation scales withM3. However, due to the introduction of
the dissipation term for the pressure in the energy equation, only the sum of the divergence
of the velocity field and the dissipation term for pressure scales withM3. Therefore the same
dissipation term for pressure has to be added to the continuity equation. The dissipation
term for the temperature is multiplied with a velocity coefficient, since it has to scale with
M3. No temperature dissipation is allowed across streamlines in an aligned flow. So, a good
choice of the velocity coefficient is the normal projection of the local velocity on the edge of
the control volume. In order to make the temperature dissipation term dimensionally correct
it is multiplied withρT . In this way the ratio of pressure and temperature dissipation terms
corresponds with the ratio of pressure and temperature updates given by the preconditioner,

Fd2i+1/2 = δ


pi+1− pi

βx
+ |u|ρT (Ti+1− Ti )

0
0
0

 .

Gd2 j+1/2 is computed in a similar way.
If the dissipation term for pressure in the continuity equation did not correspond to the

dissipation term in the energy equation, it would not be possible to obtain a temperature
field that scales withM2 for Mach numbers going to zero.

7.2.2. Viscous subsystem.The viscous subsystem is more complex for the compressible
equations than for the incompressible equations. Normal derivatives are discretized as for
incompressible flow. The discretization of the tangential derivatives is shown in the next
example. Consider the discretization of∂v

∂y along the edgei + 1/2 of the control volume in
Fig. 1. The tangential derivative is then discretized as

∂v

∂y
= vi+1/2, j+1/2− vi+1/2, j−1/2

yi+1/2, j+1/2− yi+1/2, j−1/2
,

with

vi+1/2, j+1/2 = 1

4
(vi + vi+1+ vi, j+1+ vi+1, j+1)

and the other terms are computed in a similar way.

7.2.3. Discretization in pseudotime.The discretization in pseudotime is done with the
preconditioner (22). The acoustic flux is treated implicitly in the direction of the shortest
grid distances. Since this flux is non-linear for compressible flow, a linearization is needed.
Similarly as for incompressible flow, the acoustic flux on time level(m+ 1)∗ is written as

G(m+1)∗
aj+1/2

=


ρ(m)v(m+1)∗

0

p(m+1)∗

ρ(m)H (m)v(m+1)∗


j+1/2

.

The linearization is only valid for low-speed flow.
Finally, the normal viscous fluxes are treated like the viscous fluxes for incompressible

flow. The tangential fluxes are treated explicitly.
No separate stability analysis is done for compressible flow. Thecfl-number could not

be larger than 1.6.
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FIG. 19. Convergence results for the compressible backward facing step problem, comparison of the MG line
method on two different grids for different Mach numbers.

7.2.4. Backward facing step (compressible flow).We use the same grids and the same
global reference velocitywr for the pressure dissipation term as in the incompressible test
case. On each grid the flow is calculated with the semi-implicit line method for Mach 0.1 and
Mach 10−5. Figure 19 shows the convergence results. There is no difference in convergence
behaviour between the two different grids. The difference in Mach number only causes a
shift in the magnitude of the residual; convergence is achieved in an equal number of work
units. The asymptotic convergence rate for all cases is 0.7455 per MG cycle.

Figure 20 shows the streamline patterns for both Mach numbers. No difference can be
seen between the two patterns. There is also no difference with the streamline pattern for
incompressible flow (Fig. 15).

Figure 21 shows the dimensionless isobars (21) for both Mach numbers. Again no differ-
ence can be seen with the result for incompressible flow (Fig. 16). This shows that pressure
differences are scaled withM2.

FIG. 20. Streamline pattern for the compressible backward facing step problem. Top, Mach 10−1; bottom,
Mach 10−5.
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FIG. 21. Isobar contours for the compressible backward facing step problem. Top, Mach 10−1; bottom, Mach
10−5.

Figure 22 shows isotherms for both Mach numbers. At the inlet (x=−10) a uniform
temperature field is prescribed. The temperatures are made dimensionless by

T̄ = Reh
R(T − Tc)

U2
max

,

whereTc represents the temperature at the corner. From this figure it can be seen that also
temperature differences are scaled withM2.

7.2.5. Flow in a thermally driven cavity.The final test problem considers a buoyancy-
driven flow in a square cavity [1, 2]. The configuration consists of two vertical walls at tem-
peratureTh andTc and two adiabatic horizontal walls. It is known that this problem exhibits
complex flow features depending on the Rayleigh number(Ra= ρ2gβ(Th− Tc)L3Cp/

µk), the aspect ratio of the cavity and a temperature difference parameter(ε= (Th− Tc)/

(Th+ Tc)). Hereβ is the thermal expansion coefficient,g is the magnitude of the gravita-
tional field,L is the length of the cavity walls, andµ andk are the dynamic viscosity and
thermal conductivity, respectively.

For the present study, three Rayleigh numbers,Ra= 103, 105, and 106 are considered
with a temperature difference parameterε = 0.6. The aspect ratio of the present problem
is one and transport properties (µ andk) are evaluated by using Sutherland’s law [18, 1].
The Prandtl number based on reference transport properties is 0.71. A 81× 81 uniform
grid and a local reference velocitywr for the pressure dissipation term are used for all
cases.

FIG. 22. Isotherm contours for the compressible backward facing step problem. Top, Mach 10−1; bottom,
Mach 10−5.
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FIG. 23. Convergence results for the thermally driven cavity flow problem withRa= 103, 105, and 106.

For Ra= 103, the convergence behaviour is compared with a calculation on a 321× 81
grid (grid aspect ratio 1/4). Convergence rates are shown in Fig. 23. The convergence
behaviour for the multigrid line method was essentially independent of Rayleigh number
and grid aspect ratio. The asymptotic convergence rate achieved forRa= 103 and grid
aspect ratio equal to 1/4, is 0.7897 per MG cycle. The multigrid point method required
more work units but was faster in terms of CPU forRa= 103 with grid aspect ratio equal
to one. The convergence rate for this method slowed down forRa= 103 with grid aspect
ratio equal to 1/4.

FIG. 24. Temperature isolines and streamlines for a viscous flow in a thermally driven cavity forRa= 103, 105,
and 106.
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FIG. 25. Comparison of the Nusselt number with a correlation by Chenoweth and Paolucci [1].

Figure 24 shows temperature isolines and streamlines forRa= 103, 105, and 106. The
accuracy of the numerical solutions is verified by comparing the Nusselt number at the
left-side wall with a correlation by Chenoweth and Paolucci [1] in Fig. 25. Good agreement
can be observed for all three cases.

8. CONCLUSIONS

A method of discretization of the incompressible and low-Mach-number compressible
Navier–Stokes equations is presented. The local preconditioning method is combined with
a line solver in order to remove the stiffness coming from high grid aspect ratios. This line
solver is used in a multistage stepping scheme and accelerated with the multigrid method.
The different test cases with alignment of the flow to the grid and the use of a grid aspect
ratio of 1000 show that the method is very robust and has a good performance.

As realistic flow problems, the flow through a backward facing step and the flow in
a thermally driven cavity were computed. The results show that the accuracy of the dis-
cretization method is very good. The convergence of the solution method is very fast for
both incompressible and low-Mach-number compressible flows, independent of the grid
aspect ratio. The CPU cost of the incompressible method is extremely low, due to a cheap
flux evaluation and due to the fact that the LU decomposition can be stored since all terms,
which have to be treated implicitly, are linear.
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